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Wave forces on a circular dock 

By C. J. R. GARRETT 
Institute of Geophysics and Planetary Physics, La Jolla, California 

(Received 14 April 1970) 

The scattering of surface gravity waves by a circular dock is considered in order 
to determine the horizontal and vertical forces and torque on the dock. An 
incident plane wave is expanded in Bessel functions, and for each mode the 
problem is formulated in terms of the potential on the cylindrical surface 
containing the dock and extending to the bottom. The solution is shown to have 
phase independent of depth and so may be obtained from an infinite set of real 
equations, which are solved numerically by Galerkin’s method. The convergence 
of the solution is discussed, and some numerical results are presented. 

This problem has been investigated previously by Miles & Gilbert (1968) by a 
different method, but their work contained errors. 

1. Introduction 
The proposal to build an artificial island offshore from the Scripps Institution 

of Oceanography has motivated a study of the forces that would be exerted on a 
circular dock by surface waves. Miles & Gilbert (1968) formulated the problem of 
the scattering of surface waves by a circular dock and obtained a variational 
approximation to the far field. They used the result to scale their trial function, 
from which they then calculated the near field, and hence the peripheral dis- 
turbance at  the dock and the horizontal force exerted on the dock. 

Their numerical calculations of the horizontal force were found by W. H. Munk 
to  be incorrect, as they had the wrong asymptotic behaviour for small wave- 
number. Algebraic and computational errors aside, however, a more fundamental 
error is pointed out in the appendix of the present paper. Admittedly this error 
does not affect a variational approximation to the far field, but it greatly affects 
the calculation of the vertical force. Moreover, it was felt that Miles & Gilbert’s 
methodof approximating the near field was somewhat dubious (see the appendix). 

It has been thought advisable to investigate the problem afresh. 
At first sight, it would appear that a full solution for the near field in the 

scattering problem is necessary for a precise evaluation of the wave forces on a 
body. However, Haskind (1957) has used Green’s theorem to demonstrate how 
the wave forces in the scattering problem may be calculated from the far field 
radiated by the body oscillating in otherwise calm water in a mode corresponding 
to the force required. Newman (1962) discussed this method, and used approxi- 
mations to the far field in the radiation problem to obtain forces in the scattering 
problem for submerged ellipsoids and floating elliptical plates. Indeed, the main 
use of this elegant technique is in problems where the detailed scattering problem 
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is intractable, but where a reasonable approximation for the fa,r field in the 
radiation problem may be obtained. 

However, if one wishes to derive precise values for the forces, the effort re- 
quired for a full solution of the scattering problem is no greater than for the 
radiation problem, and of course provides other details, such as the peripheral dis- 
turbance a t  the body, should these be required. The simple geometry of a circular 
dock does allow one to  derive precise solutions without too much trouble, and so in 
this paper the scattering problem will be formulated, certain general results about 
the solution will be proved, and some numerical results will be presented. 

2. Formulation 
The notation used here will be largely the same as that used by Miles & Gilbert 

(1968). A plane wave of amplitude Co, frequency c and wave-number k is incident 
on a circular dock of radius u and draft d - h in water of depth d (see figure 1). 
v and k are related by the dispersion relation 

(2.1) a2 = gk tanh kd. 

'p a --3 I 'I' 
d h 

7 / / / / / / / / / / / /  f / / I /  ~ , l l l l l l Y l ,  > X / / , / / , , , , / , / / , I , / ,  

FIGURE 1. Definition sketch. The axis and direction of the torque T (see 54)  are shown. 

Small amplitude irrotational flow is assumed. The free surface displacement is 
given by the real part of Cexp ( - i d ) ,  where the incident wave has 

in which 

C = C0exp (ikx) 
m 

Eo = 1, En% = 2 (m > 1). 

The total disturba,nce may be expressed as 

a,nd the corresponding displacement potential (the velocity potential x i/r) is 

where 
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in order to satisfy the kinematic free-surface condition. r ,  8, z are cylindrical 
co-ordinates; 8 = 0 corresponds to the positive x-axis, z is positive upwards with 
origin on the sea bottom. q5 must satisfy 

V2$ = 0, (2.8) 

(2.9) 
c r z $ - g - = O  aq5 on z = d ,  

az 

aq5 
ax 
--= 0 on z =  0,  (2.10) 

2 = 0  on r = m  for h < z < d .  (2.11) 
ar 

Moreover, $m and a$,lar are continuous a t  r = a for 0 6 z < h. Miles & Gilbert 
(1968) expressed $m in the interior region r < a and the exterior region r 2 a in 
terms of a$m/arl,,,a, and then matched $, a t  r = a. However, it turns out to be 
rather simpler to express the interior and exterior solutions in terms of $mI,=a 
and apply conditions on alC.,/ar at r = a. Let 

1 8 $nt(a, z )  = fnt(z) for 0 Q z < d, t  (2.12) 

so that fnL(z) is dimensionless. For the interior solution we expand fn,(z) as 

where 

Thus 

co 
fnL(z) = x e,F,,cos r?) for 0 < z < h, 

n=O 
(2.13) 

(2.14) 

where I ,  is the modified Bessel function of the first kind. We note that there is no 
term proportional to logr in $, as there is no source or sink under the dock. 
However, the term Foo is non-zero and vital. 

I n  the exterior region, the appropriate expansion for fna(z) is 

f,(z) = x .Fm,Za(z) in 0 Q z Q 
a 

1 d  
where %a = ;iso fm(z)Za(z)dz. 

a is a root of 

x denotes summation over a, including a! = -ik, with 

as the first term as well as all the positive real roots of (2 
Z,(z) are given by 

a tail ad + a2/g = 0. 

a 

Z,(Z) = N,* cash k ~ ,  

d,  (2.16) 

(2.17) 

(2.18) 

corresponding suffix k ,  

18). The eigenfunctions 

(2.19) 

t Bold face is used to distinguish the potential formulation from the velocity formula- 
tion; see Miles (1971). 
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Z,(X) = N i J  COSCIZ, ( 2 . 2 0 )  

where (2 .21)  

( 2 . 2 2 )  

Zk(z), Z,(z) then form a complete orthogonal set in [O,d] with mean square 
values of 1.  Hence, 

JTL is an ordinary Bessel function, and H, = J, + iYwL is the Hankel function of 
the first kind (omitting the usual superscript 1 ) .  K,  is the modified Bessel func- 
tion of the second kind. The first terms on the right-hand side of ( 2 . 2 3 )  describe 
the incident wave plus a scattered wave introduced to give a zero net contribution 
to $m(a, z).  Of course the rest of the scattered far field comes from the first term 
in the infinite sum over a, for which a = - ik and 

K,( - ikr)  = &7im+'H,(kr). ( 2 . 2 4 )  

to be continuous a t  r = a for 0 < z < h, and to  vanish 

E ~ G G ~ F , ,  cos r?) in 0 < z < h, ( 2 . 2 5 )  

B,Z,(z) = ~3;i%,aZa(x) in h 6 z 6 d, ( 2 . 2 6 )  

where B, = - Zi[.rrH,(ka)dZ;(d)]-l, ( 2 . 2 7 )  

using J, (ka)Hk(ku)  - J k ( k a ) H m ( k u )  = -. ( 2 . 2 8 )  

Also, 3,,,a = - K,(aa) [ a a K & ( a u ) ] - l ,  ( 2 . 2 9 )  

We now require 
at  r = a for h < z 6 d (from 2 . 1 1 ) .  Hence we obtain the two equations 

W 

B,Z,(z) = E 3 G i 3 , L a Z a ( ~ )  + 
a n=O 

a 

2i  
rrka 

Now, substituting ( 2 . 1 6 )  in ( 2 . 1 4 ) ,  we have 

F m n  = C L n a s m a t  
a 

where 

and 

(2 .30)  

( 2 . 3 1 )  

( 2 . 3 2 )  

( 2 . 3 3 )  

( 2 . 3 4 )  
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Equation (2.25) now becomes 

A n  approach to the solution of (2.26) and (2.35) will be described in $3 .  

3. Solution 

over its region of validity and add, we obtain 
If we multiply the two equations (2.26) and (2.35) by Zp(z)/d, integrate each 

where 

(3.1) 

(3.2) 

The only imaginary term in Epa is contained in 

Define a real matrix, Elp’L2 = Epa - 9& (3.3) 

x E g A a  = 4kp. (3.4) 

assume that it is non-singular, and that #mG is the solution of 

a 

(3.5) 

Of course, #ma is real, and so (3.5) gives us the result that the phase of Fnga is 
independent of a, i.e. the phase of fm(z) is independent of z. Garrett (1970) 
proved a similar result for the problem in which the dock is replaced by an open- 
bottomed circular cylinder. The numerical solution for will be discussed in $ 5 .  

4. Wave forces 

Bernoulli’s theorem as the real part of p exp ( - i@7 where 
The various forces on the dock will be calculated from the pressure, given by 

p(r ,  8 , z )  = pa2#(r,  8 , 4  (4.1) 

= pv2& C emim$Jr7 z )  cos me. (4.2) 
?n=o 

The force on the dock in the positive x direction is then given by the real part of 
X exp ( - id)  where 2n d 

x = -pv2Jo lh #(a7 B, z)a cos o d m z  (4.3) 

(4.4) 
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From (2.1), (2.23), 

X I B  = - 2ikd tanh kd[Nkg~lk(ka)-l(sinh kd - sinh kh) 

where 

+ x'N;kFla(aa)-l(sin ad - sin ah)], (4.5) 

B = na2c0pg (4.6j 
a 

is the hydrostatic buoyancy force associated with a free surface elevation go 
over the area of the dock. 2' denotes summation over all the real values of a ;  

i.e. a = - ilc is omitted from the sum. 
a 

The vertical force on the dock is given by the real part of 2 exp ( - iat) wherc 

2 = 2kdtanhkd[&Foo+2 Z W r y ) - 2 F o n  __ a;:]. 
B n = l  

whence (4.9) 

The F,, are obtained from the solution So, by (2.31). 
The torque on the dock about the axis shown in figure 1 is given by the real 

part of T exp ( - id) ,  where T is made up of T,, arising from forces on the side of 
the dock, and Tb, arising from forces on the bottom of the dock. 

(4.10) 

whence 

T,/Ba = - 2ikd tanh kd{N;&Fik(ka)-2[k(d - h) sinh kd - cosh kd + cosh kh] 

+ 2' N;+~la(aa)-2[a(d - h) sin ad + cos ad - cos ah]). (4.11) 

(4.12) 

a 

Tb = - 277'&2<0/~ Y2$hl(Y, h) dr ,  

in which the Fln are obtained from the solution 
One interesting result, immediately apparent from these formulae a.nd (3 .5 ) ,  

is that the horizontal force and the torque are in phase (apart from a possible 
difference in sign). 

When the dock extends all the way to the bottom (i.e. h = O ) ,  the horizontal 
force and torque are given by the results of MacCamy & Fuchs (1954) : 

by (2.31). 

4 - [kd tanh kd - 1 + sech Ed]. T Ts - -_ -  
Ba - BCG n(ka)3H;(ka) 

(4.14) 

(4.15) 
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5. Numerical methods and results 
Havingprovedthe constancyof phaseof Pma, we could substitute (3.5) back into 

(2.26) and (2.35) to obtain real equations involving the unknown coefficients $,,. 
These equations could then be solved for a finite number of a by minimizing the 
error in least squares. However, this is algebraically complicated, so i t  was 
decided to solve (3.4) taking only the first P values of a and q5,,,,. This is essentially 
Galerkin's method. Of course, the infinite series in (3.2) must also be truncated 
after, say, N terms. For large n the terms in the series fall off like n--3, so that 
convergence is quite rapid, but the largest contributions for a given a, p come 
from the values of n close to ah/n, ,8h/n. Now the p t h  real root of (2.18) is close 
to  pn-Id, so that N must be greater than Ph/d in order to  include the important 
terms in the series. 

If the forces on the dock obtained from the solution of (3.4) with finite N ,  P a r e  
regarded as functions of N ,  P, then we require the limit as N-tco and P->co. 
Probably the simplest way to check convergence of the results is to  solve with a 
fixed N (or P )  for a number of values of P (or N ) ,  and extrapolate to infinity by 
plotting the results against N" (or P+) for s > 0 and extrapolating to  zero. 
Usually one takes s = 1, but if more precision is required, one may generally 
find two values of s, for one of which the curve is concave, and for the other of 
which it is convex, and hence upper and lower bounds on the solution are obtained 
with reasonable confidence. Generally, of course, this extrapolation is only 
performed for one or two cases, and one then takes N and P large enough so that 
the forces are given to sufficient accuracy by the results for these values. The time 
taken for a numerical solution of (3.4) has terms proportional to N and to P3, 
and the storage required has terms proportional to  N ,  P N  and P2, so that any 
need for extrapolation arises with P rather than N .  For the values of d/a, h/a and 
ka  considered here I used P = 20 and N = 50. For the most part this produced 
extravagantly accurate results, though convergence was slower for the vertical 
force and the torque due to  the forces on the bottom of the dock than for the 
horizontal force and torque due to the forces on the side of the dock. Errors 
greater than 1 yo only occurred when the vertical force was very small anyway, 
and it was then easily corrected by extrapolation as a function of 1/P, taking 
P = 10,20,30,40. The results presented here have all been calculated t o  an 
accuracy of 1 % or better. 

Figures 2 , 3 , 4  show the horizontal force, vertical force and torque exerted on 
the dock as functions of ka for different values of h/a. The (a) figures are for d / a  = 

0.75, the ( b )  figures for d/a = 1.5. The phase of the horizontal and vertical forces 
is also shown; the phase of the torque is the same as that of the horizontal force. 
The phases are plotted as continuous functions (rather than being restricted to 
( - n-, n-)), a negative phase represents the amount by which the force leads the 
incident wave a t  x = 0. 

As expected, the horizontal force is in phase with minus the slopeof the incident 
wave for small ka. The maximum horizontal force is roughly proportional to  the 
draft of the dock, d - h. As lea -+ 00, the force tends to that exertedon a long cylinder 
in deep water. The phase tends to  - k a +  in, i.e. the force lags the wave at the 
leading edge of the dock by B;.. 
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FIGURE 2. Horizontal force on the dock. -, amplitude; - - -, phase. 
(a )  d/a = 0.75, (71) d/a = 1.5. 
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The vertical force also tends to the right limit for ka+ 0; the amplitude tends 
to  the hydrostatic buoyancy force and the phase to zero. As ka-- fm,  the phase 
tends to - ka + an as the amplitude tends to zero. The reason for this is that, as 
the scattering tends to that from a long cylinder, 13’,&hOkI 9 1 in (3.5), so that 
the phase of the vertical force equals that of BOG,,. 
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ka 
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FIGURE 3. Vertical force on the dock. __ , amplitude; - - -, phase. (a)  &/a = 0.75, (6) 
d/a = 1.5. The differences in phase for the two values of h/a are indistinguishable on this 
scale. 

10 
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The torque on the dock behaves in much the same way as the horizontal force, 
being zero at both limits, and having a maximum a t  a value of ka close to 1. The 
phase of the torque is always the same as that of the horizontal force, so that for 
sufficiently large Ica a,ll the forces on the dock are in phase. For large ka the torque 
contributed by the force on the side of the dock behaves like (4.15) with d replaced 
by d -  h. 
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- 
I 1 I 

2 4 6 8 10 
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(b )  

FIGURE 4. Amplitude of torque on the dock. Phase as for the horizontal force. 
(a )d /a  = 0.75, ( b )  dlu = 1.5. 

It is interesting to  compare the results for dla = 0.75, hla = 0.25 with those for 
&/a = 1-5, hla = 1.0, as both describe a dock ofdraft (d  - h) /a  = 0.5.  The difference 
in the horizontal force is small, but the torque is somewhat greater and the 
vertical force much greater for the smaller value of dla. This is perhaps under- 
standable in terms of the incident wave trying to squeeze water into a narrower 
gap between the bottom of the dock and the bottom of the sea for the smaller 
value of d/a, with greater pressures resulting. 
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Appendix. The formulation of Miles & Gilbert 
Miles & Gilbert (1968) investigated the same problem as the present paper. 

They expanded the interior and exterior solutions in terms of a@wL/arI,=, and then 
matched qkm at r = a for 0 < z < h. As they remark, a constant may be added to 
their representation of @, in the interior region (their equation (2.7)). They 
incorrectly take this constant to be zero. I n  fact, the constant is related to that 
part of the pressure under the dock which is independent of position and con- 
tributes nearly all the vertical force on the dock. Their (2.20) should thus be 

F,, drops out in the derivation of their (3.2) due to the constraint (2.8), and so 
their variational approximation to the far field is unaffected by their mistake. 
However, there is no wa,y to determine Foo, and hence the vertical force on the 
dock, from their variational formulation. 

Moreover, it was suspected that Miles & Gilbert’s technique for calculating the 
near field might lead to inaccurate values for the horizontal force and torque on 
the dock. From their variational formulation they can calculate the far field to 
O(e2) from a trial functionwhich has the right shape to O(E)  (itsmagnitude cancels). 
With the trial function they use they probably get a very good approximation in 
this way to the amplitude of the far field; but, by using this to scale their trial 
function, they only calculate the wave forces to O(e) ,  and of course one doesn’t 
know just how big an error O(s)  might represent. 
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